
Coarse-to-Fine for Sim-to-Real:

Sub-Millimetre Precision Across Wide Task Spaces
Supplementary Material

Eugene Valassakis, Norman Di Palo, and Edward Johns

1 Overview

In this document we detail supplementary information on our work. In sec-
tion 2, we present details about our policy implementations, including neural
network architectures and training hyperparameters. In section 3, we present
in detail the expert policies used to generate the states and labels used in train-
ing. In section 4, we provide further details about our simulation environments,
enumerating all the relevant simulator aspects that are being randomised in
order to overcome the reality gap.

2 Network Details and Hyperparameters

Our main network architecture consists of an encoder-decoder that first en-
codes input images into a keypoint representation [2] before decoding them into
a depth reconstruction and a control action outputs. In some experiments, we
also use a standard convolutional neural network (CNN) architecture that con-
sists of a simple convolutional encoder without any depth reconstruction. In
all cases, the image inputs are taken from the wrist-mounted camera, and the
output control actions consist of velocity commands in end-effector space. In
this section, we describe implementation details for our network architectures,
followed by network training implementation details.

1

Figure 1: Our keypoint-based, encoder-decoder architecture

2.1 Network Architecture Implementation Details

2.1.1 Encoder Decoder Architectures

Our encoder-decoder networks are inspired from the deep spatial autoencoder
architecture [2], and encode an image into a set of keypoints that are input
into a policy and a depth reconstruction branch. This is illustrated in Fig 1.

Our encoder consists of 5 convolutional layers, each followed by 2-dimensional
Batch Normalisation (BatchNorm) [4] and ReLU activations [7]. The layers
have [64, 128, 256, 128, 16] filters of kernel size [5, 3, 3, 3, 3], and stride of
[2, 1, 2, 1, 1], respectively. From the last convolutional layer, 16 keypoints
are extracted using the spatialSoftArgmax operation [2].

Our depth reconstruction decoder takes in those keypoints and first con-
structs 16, 64× 64 heatmaps, using Laplace distributions with fixed scale set
to 0.05, concatenated into a 64× 64× 16 tensor. This tensor is then processed
by 5 convolutional layers, with BatchNorm and ReLU activations in all but
the last layer which has a sigmoid activation. The intermediate layers have
[128, 64, 64, 32] filters, and the final one has 1 channel for the depth recon-
struction map (or 2 when using concatenated stereo IR inputs to reflect the
depth reconstructions from both point of views). The kernel sizes for each
layer are [5, 3, 3, 3, 3] and the stride is 1 throughout.

Our policy takes in the flattened keypoints and is composed of 3 fully-
connected layers with [128, 128, 4] units. Each hidden layer is followed by
BatchNorm and ReLU activations, and the final layer has a simple linear

2

activation.
We note that (1) for experiments where we used an encoder-decoder archi-

tecture without keypoints we kept the same structure but removed the spa-
tialSoftArgmax [2] and Laplacian map operations, using convolutional features
directly instead, and (2) for our fully end-to-end experiments, the dimension-
ality of the input images, Laplacian maps and depth reconstruction outputs is
128× 128.

2.1.2 CNN Architecture

In some of our experiments we also compare our encoder-decoder architectures
with a simple convolutional encoder without any depth reconstruction, consist-
ing on a standard CNN architecture. In making this architecture we aimed to
keep the number of parameters used as close as possible to our encoder-decoder
networks, while increasing its performance to the best of our ability. Inspired
by widely used and successful architectures [6], our CNN is composed of 5 con-
volutional layers, each with BatchNorm, ReLU activation, and Dropout [8].
The layers have [32, 64, 128, 256] and 32 channels respectively, with kernel
sizes [5, 3, 3, 3, 1] and stride [1, 1, 2, 2, 1]. The Dropout probability is
set to 0.1. The feature map output from the last convolutional layer is then
flattened into a 1-dimensional vector further processed by two fully connected
layers of [64, 4] units, respectively. The hidden layer is followed by a ReLU
activation and Dropout, while the output layer has a simple linear activation.

2.2 Training Details

We use the same training hyperparameters for all our networks: the input
images are normalised such that the input features are in the [0, 1] range. We
further apply min-max normalisation to the output actions, so that they are
also in the [0, 1] range. We use a batch size of 32, and the Adam optimiser [5]
with a learning rate of 1e−3 that is halved every 10 epochs. Finally, we apply
an L2 weight decay regularisation with a weight of 1e − 6. In an attempt to
minimise the effect of training hyperparameters on the final performance, for
the networks we trained we test 30 and 40 epochs of training, keep the best
performing version for the final experiments.

3

3 Expert Policy Details

In this section we describe in detail the expert policies we used in order to
generate the demonstrations when gathering our datasets.

For the coarse-to-fine policies, the demonstrations start at an initial pose
sampled from around the bottleneck. Specifically, the initial position and ori-
entation offsets are sampled from a 2.5cm×2.5cm×1.5cm rectangular volume
and a [−0.45, 0.45]rad range, respectively. The expert policy is then deployed
to carry out the insertion. It relies on an alignment waypoint to align the ring
with the peg before completing the insertion through a downward push. This
alignment waypoint has the same orientation and x, y position as the bottle-
neck but is on a different position on the vertical axis. The expert policy
consists of a proportional controller in end-effector space reaching to first the
alignment waypoint, and second to a final goal pose that completes the inser-
tion. As such, the linear velocity v is obtained from the position error e by
applying some proportional gains k: v = e� k, where � is element-wise mul-
tiplication. The angular speed ω is pegged to the linear velocity v such that ,
ω = α

d/||v|| , where α and d are the remaining angular and linear distances to
the current target, respectively. For the screw insertion task, the expert policy
also has a second stage with a twisting motion of constant angular velocity of
0.0873 rad/s, which is engaged after insertion.

In order to allow for a good coverage of the state space, encourage robust-
ness, and limit dataset imbalances, we found it important to (1) randomise
the position of the alignment waypoint, as well as how closely it needs to be
reached before it switches to the final target goal (see table 3), (2) limit the
controller’s policy speed to a maximum of 5mm/s with a further cut-off of
the resulting labels at 2mm/s, and (3) increase the gains of the x, y com-
ponents in the proportional controller relative to the z component, setting
k = (2.5, 2.5, 1).

4 Simulation Randomisation Details

In this section we describe all the simulation aspects that we randomise during
our domain randomisation (DR) procedure [10, 11]. We break these down into
three categories: Visual randomisation in 4.1, Dynamics randomisation in 4.2,
Geometry randomisation in 4.3.

4

4.1 Visual Randomisation

When transferring image-based policies between simulation and the real world
perhaps the most obvious hurdle to overcome are the visual differences between
the two domains.

These are most often due to (1) colours which can vary significantly in
the real world, depending on external conditions such as lighting or sensor
properties, (2) textures, with real world objects rarely being composed of
smooth monochrome surfaces, and (3) lights including shadows and the colour
variations that they induce in the surface of objects. In order to overcome all
these differences we use visual domain randomisation [10], with the parameters
we randomised being described in Table 1.

When using an assisted stereo depth images however, the differences be-
tween the simulation and the real world mostly manifest as noise in the depth
maps and missing depth values. In order to account for these we build on
the procedure described in [9] and use the depth noise profile described in [1].
In Table 2, we describe in some more detail the parameters we randomise in
order to get variability in the depth maps.

5

Table 1: Table describing the aspects of the simulation randomised for visual
DR.

Randomised
Aspect

Description

Light source
position

At each of timestep, two omnidireactional light sources are positioned
relative to the object being manipulated, by choosing r ∼ [1.5, 3.5] meters,
θ ∼ [0.26, π/2] radians, and φ ∼ [−π, π] radians in spherical coordinates.

Light source
colour

At each timestep, the colour of the light emitted is set by sampling
the corresponding R,G,B values.

Ambient Light
intensity

At each timestep, the ambient light intensity is varied by setting
CoppeliaSim’s sim arrayparam ambient light parameter to a white light
with an intensity sampled uniformly from [0.7, 1.4].

Colours Shift
At each timestep, the colour of each component of the simulation is
randomised around its mean by shifting the R,G,B channels
independently by up to 30%.

Colours Damping
The brightness in the colour of each simulation component is lowered by
up to 20% at each simulation timestep to help avoid the over saturation
of pixel values.

Grayscale textures

Random grayscale images are sampled uniformly to apply textures to the
different simulation components. To obtain these images we download
the folder found here∗ [3] , which contains a large number of images that
can be used as textures. We then convert all the images to grayscale,
increase their brightness by a random factor fb ∼ [1.5, 2.5], and decrease
their contrast by a random factor fc ∼ [0.2, 0.5].

∗https://github.com/tianheyu927/mil/blob/master/scripts/get_data.sh ,
made available by [3]

6

https://github.com/tianheyu927/mil/blob/master/scripts/get_data.sh
https://github.com/tianheyu927/mil/blob/master/scripts/get_data.sh

Table 2: Table describing the parameters randomised when generating syn-
thetic depth images.

Randomised
Aspect

Description

Proportional depth
noise

The value of the depth d at each pixel is augmented with gaussian noise
of mean 0 and standard deviation
0.001063 + 0.0007278 ∗ d+ 0.003949 ∗ d2 [1]

Minimum depth
range

The minimum depth range is sampled uniformly within [16.0cm, 18.0cm].
Any depth pixel with a value smaller than the minimum is set to 0.

Morphological
opening kernel

sizes

The kernel size for each morphological opening operation on the depth
masks are randomly chosen from {2, 3, 5}.

Morphological
dilation kernel

sizes

The kernel size for each morphological dilation operation on the depth
masks are randomly chosen from {0, 3, 5, 7, 9, 11}.

Medial filtering
kernel sizes

The kernel size for each median filtering operation on the depth masks
are randomly chosen from {0, 3, 5, 7}.

Gaussian filtering
scale

The standard deviation for the gaussian filtering operation on the depth
maps is sampled uniformly within [0., 3.5].

Perlin noise
parameters

We wrap our depth maps using perlin noise with the procedure and
parameters described in [12] and [9].

4.2 Dynamics Randomisation

Differences in the dynamics between the simulation and the real world result in
the actions taken in the two domains to have different effects. This can result
from various sources, such as differences in the physical properties of the two
domains or hard to model physical processes including gear backlash and time
delays that occur due to the continuous time nature of the real domain versus
the stopping time nature of simulations. We note that in our setup the biggest
difference seemed to emerge from computation times, where even though both
control loops were set to 20Hz, in practice the real execution frequency could
become up to several times slower due to the time needed to do computations
on each iteration. In order to account for any such differences, we add diversity
in the distribution of states visited in simulation, which has been shown to be
an effective approach. We diversify the state visitation by (1) augmenting
the control actions at each simulation timestep with various sources of noise,
and (2) adding diversity in the expert policy trajectories. Both aspects are
described in Table 3.

7

Table 3: Table describing the simulation aspects randomised for overcoming
the dynamics discrepancies between the simulation and the real world.

Randomised
Aspect

Description

Additive action
noise

At each time step, white gaussian noise is added to each action. Each
dimension of an action is treated independently, with the linear velocity
noise having a standard deviation of 2 mm/s and the angular velocity noise
having a standard deviation of 0.035 rad/s.

Action rescaling
factor

At each time step, each action dimension is re-scaled by up to 5%. All
dimensions are rescaled by the same factor at a given timestep.

Systematic
action noise

At each time step, a systematic error of up to 0.5 mm/s is added to each
linear velocity component of the action, and one of up to 0.0035 rad/s is
added to the angular velocity component. This error is sampled uniformly
at the beginning of every new trajectory, and remains constant
throughout the episode.

Alignment
waypoint
position

The position of the alignment waypoint along the vertical axis is randomised
at the beginning of each episode, varying between 1.1cm and 2.1cm above
the top of the peg.

Alignment
acceptance

radius

How closely the ring needs align with the alignemnt waypoint before
switching to reach towards the final goal position is varying between 0.5mm
and 2.5mm, and is randomised at the beginning of each episode.

4.3 Geometry Randomisation

Differences in the geometry between the simulated and real world environments
can also have a large effect on the final policies. In our work, we assume that
the dimensions of the models (mesh files) imported in simulation are accurate,
but that their relative poses may be subject to errors. We overcome these
by randomising the associated simulation parameters, which we describe in
Table 4.

8

Table 4: Table describing the randomised aspects in the geometry of the sim-
ulated environments

Randomised
Aspect

Description

Camera
pose

At each time step, the camera pose is randomised relative to the end-effector,
with all the sensors on the camera (RGB, IR, Depth) getting the same
transformation. The camera position is sampled uniformly inside a
0.0085938m× 0.01780764m× 0.0049902m rectangular volume centred around
a mean obtained by calibration. The camera orientation is also sampled
uniformly inside a 0.06698968rad× 0.03490336rad× 0.00682072rad volume,
centred around an orientation mean obtained by calibration. We note that
each side of these volumes corresponds to four times the standard deviation
of the corresponding calibration estimate.

Vision sensor
relative pose

At each time step, we also randomise the pose of each vision sensor relative
to each other. After applying the camera randomisation to all sensors, each is
further independently randomly shifted within a (0.6mm)3 and a
(0.008rad)3 volumes centered around their current positions and orientations.

Depth light
emitter pose

The depth light emitter pose is first randomised with the whole camera
along with the vision sensors. Then, its position is further randomly shifted
within a 20mm× 0.3mm× 0.3mm volume, and its orientation within a
(0.004rad)3 volume.

Ring
pose

At each time step, the ring pose relative to the end-effector is randomised
by sampling uniformly its position and orientation around its initial pose. For
the square ring, its position is sampled within a 0.4mm× 2.0mm× 3.0mm
volume and its orientation within a 0.026rad× 0.017rad× 0.008rad volume.
For the round and screw rings, those volumes are increased to
0.4mm× 8.0mm× 4.0mm and 0.21rad× 0.034rad× 0.35rad respectively,
since they were harder to accurately place in the real world gripper.

Gripper finger
position

At each time step, the gripper finger positions are randomised relative to the
end effector. Both get the same transformation, sampled uniformly within a
4mm× 2mm× 1mm volume.

Gripper finger
relative position

The position of each finger is further randomised independently within
a (0.5mm)3 volume.

Finger pad
pose

The pose of each finger pad is independently randomised around their initial
pose. The pad positions are sampled within a (0.5mm)3 volume, and their
orientations are sampled within a 0.02rad× 0.02rad× 0.025rad volume.

Image crop
position

The images input to the networks are cropped around the end-effector
position in the image. However, locating the exact position of the end-effector
in the real images is subject to noise, so we also randomise the end-effector
position in the simulated images to account for this. As such, on each
simulated image we shift the crop centre by up to 9 pixels on both the
x and y directions independently before applying the image crop.

9

References

[1] M. S. Ahn, H. Chae, D. Noh, H. Nam, and D. Hong. Analysis and
noise modeling of the intel realsense d435 for mobile robots. In 2019
16th International Conference on Ubiquitous Robots (UR), pages 707–
711. IEEE, 2019.

[2] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel. Deep
spatial autoencoders for visuomotor learning. In 2016 IEEE International
Conference on Robotics and Automation (ICRA), pages 512–519. IEEE,
2016.

[3] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine. One-shot visual
imitation learning via meta-learning. In Conference on Robot Learning,
pages 357–368. PMLR, 2017.

[4] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International conference
on machine learning, pages 448–456. PMLR, 2015.

[5] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. Advances in neural information
processing systems, 25:1097–1105, 2012.

[7] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltz-
mann machines. In Icml, 2010.

[8] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov. Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–1958, 2014.

[9] S. Thalhammer, K. Park, T. Patten, M. Vincze, and W. Kropatsch. Sydd:
Synthetic depth data randomization for object detection using domain-
relevant background. TUGraz OPEN Library, pages 14–22, 2019.

[10] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel.
Domain randomization for transferring deep neural networks from simu-
lation to the real world. In Intelligent Robots and Systems (IROS), 2017
IEEE/RSJ International Conference on, pages 23–30. IEEE, 2017.

10

[11] E. Valassakis, Z. Ding, and E. Johns. Crossing the gap: A deep dive into
zero-shot sim-to-real transfer for dynamics. In International Conference
on Intelligent Robots and Systems (IROS), 2020.

[12] S. Zakharov, B. Planche, Z. Wu, A. Hutter, H. Kosch, and S. Ilic. Keep
it unreal: Bridging the realism gap for 2.5 d recognition with geometry
priors only. In 2018 International Conference on 3D Vision (3DV), pages
1–11. IEEE, 2018.

11

	Overview
	Network Details and Hyperparameters
	Network Architecture Implementation Details
	Encoder Decoder Architectures
	CNN Architecture

	Training Details

	Expert Policy Details
	Simulation Randomisation Details
	Visual Randomisation
	Dynamics Randomisation
	Geometry Randomisation

